Человеческий глаз — удивительный орган: он может моментально сфокусироваться на любом предмете, будь он в полуметре от глаз, или в сотне метров. Он может различить даже небольшое движение на периферии зрения. Но при этом он, увы, инертен, и поэтому, если показывать человеку ряд картинок с определенной частотой, то начиная с определенного количества картинок в секунду нам будет казаться, что это уже не статичные изображения, а движение. Но вот вопрос — начиная с какой частоты так происходит?
Первое мнение — 24 кадра в секунду хватит всем, и его очень любят киношники: ведь это позволяет им экономить пленку. Получился такой результат чисто экспериментально — это минимальный fps в видео, при котором оно все еще кажется нам видео, а не слайд-шоу. Но тогда почему 24 кадра в компьютерной игре кажется нам мало? Ответ прост — один кадр, снятый камерой, является суперпозицией всего происходящего, пока был открыт затвор. Иными словами, гоночная машина, при снятии ее камерой, выглядит так:
А вот в игре, где каждый кадр — это четко просчитанная видеокартой картина в каждый момент времени, любой скриншот будет выглядеть четко (если, конечно, размытие не сделано програмно).
Поэтому 24 fps в видео достаточно, так как каждый кадр имеет в себе информацию, позволяющую склеить его и с предыдущим, и с последующим. А вот в играх это не так, и 24 кадра в секунду там мало. Но сколько нужно fps в играх? Экспериментаторы решили пойти другим путем — не показывать человеку игру, постепенно увеличивая fps и спрашивая, стала ли она плавной. Они решили определить инертность глаза, то есть время, которое нужно ему для обработки информации об одном кадре. И оно оказалось около 20 мс, отсюда легко получается, что глазу для плавности достаточно 50 fps. И тут многие делают несколько неправильный вывод — ну если 50 fps достаточно, то возьму-ка я монитор с частотой в 60 Гц (с небольшим запасом) и буду любоваться плавной картинкой.
В чем же их ошибка? А ошибка в том, что fps и Гц это не одно и тоже — первое это кадры, которые отображает матрица, а второе — это количество поступающих на нее сигналов в секунду. Казалось бы, даже по определению это одно и то же. Но мы забываем про то, что у мониторов есть время отклика. К примеру, нам нужно изменить цвет с серого на темно-серый, и если мы подключим осциллограф, то увидим, что матрица «въезжает» в цвет аж 34 мс:
Но ведь если мы хотим получить 50 fps, то задержка должна быть не более 20 мс, а тут в полтора раза больше. Что это означает? А это означает то, что в динамических сценах мы никогда не увидим правильные цвета, потому что матрица банально не успеет в них «попасть» — кадры сменяются быстрее. Поэтому мы видим различные артефакты картинки в виде шлейфов и некорректных цветов.
Но что если мы возьмем матрицу с частотой в 120 Гц и сравним с 60 Гц матрицей? Картина будет такая (кадры сделаны раз в 8.3 мс, что соответствует 120 Гц):
Хорошо видно, что белые шлейфы за объектами на 120 Гц значительно меньше. Более того — непопадания в цвет так же будут исчезать значительно быстрее, да и сами промахи цветопередачи будут меньше, так как теперь изменение яркости будет происходить не в один шаг, а в два, а чем меньше шаг — тем меньше промах. В итоге картинка на 120 Гц будет действительно казаться плавнее, но не из-за того, что человеческий глаз может воспринимать 120 fps, а из-за того, что на такой матрице будет гораздо меньше артефактов, и она быстрее реагирует на изменение картинки.
Имеет ли смысл повышать частоту еще выше — до 240 Гц к примеру? Имеет — это еще сильнее уменьшит шлейфы и промахи в цвете. Но на сегодняшний день системы, которые могут выдавать в современных играх в FHD 240 кадров в секунду стоят очень дорого, поэтому пока что такие мониторы не нужны. А вот 120 fps уже способна выдать не самая дорогая из современных видеокарт Nvidia GTX 1080, так что если у вас она есть — можно купить монитор с частотой обновления в 120 Гц — картинка в играх станет приятнее.