Компьютеры и аналогичные электронные устройства стали быстрее и ощутимо меньше за последние десятилетия, так как производители компьютерных микросхем научились сокращать размеры отдельных транзисторов — крошечных электрических переключателей, которые передают цифровую информацию.
«Кремниевый процессор в современной технике имеет сотни миллионов или даже миллиарды транзисторов», — сказал доктор Кёнджо Чо, профессор материаловедения и инженерии в Техасском университете в Далласе. «Но мы быстро приближаемся к нижним пределам масштаба».
Чтобы продолжать наращивать производительность процессоров, индустрия микроэлектроники ищет альтернативные технологии. Исследование Чо предлагает интересную возможность сделать транзистор быстрее без уменьшения его техпроцесса — увеличить его словарный запас.
Так как с физической и электрической точки зрения транзистор является переключателем, то он может быть либо включен, либо выключен, что можно трактовать как 0 или 1 в двоичном языке. Одним из способов увеличения производительности процессора без добавления дополнительных логических элементов является увеличение объема информации, с которым работает каждый транзистор, путем введения промежуточных состояний между состояниями включения и выключения. Основанный на этом принципе так называемый многозначный логический транзистор позволит обрабатывать больше операций и работать с большим количеством информации, чем обычный бинарный транзистор.
«Концепция многозначных логических транзисторов не нова, и было много попыток сделать такие устройства», — сказал Чо. Например, в конце 50-ых годов в СССР был создан компьютер «Сетунь», который работал на троичных ферритодиодных ячейках. В каждый трит (троичный аналог бита) записывалось два двоичных разряда: иными словами, комбинации (0,0) и (1,1) давали в результате 0, (0,1) — это -1, а (1,0) уже 1, так что в итоге получалась симметричная троичная система (-1, 0, 1). Однако, такие ячейки были дороги и трудны в производстве, так что после производства 46 таких компьютеров от них решили отказаться в пользу более привычных и дешевых двоичных транзисторов.
Компьютер «Сетунь».
Команда Чо в Техасском университете разработала фундаментальную физику многозначного логического транзистора на основе оксида цинка. Их коллеги в Южной Корее успешно изготовили и оценили характеристики прототипа устройства на их базе. Устройство Чо способно к двум электрически стабильным и надежным промежуточным состояниям между 0 и 1, увеличивая число логических значений на транзистор с двух до трех или четырех.
По словам Чо, его новое исследование является важным не только потому, что технология совместима с существующими конфигурациями компьютерных чипов, но также и потому, что она может преодолеть разрыв между обычными и квантовыми компьютерами, что потенциально является следующей вехой в развитии вычислительной техники.
В то время как обычный компьютер использует точные значения 1 и 0 для выполнения вычислений, основная логическая единица квантового компьютера — кубит — устроена более сложно: его значения могут существовать в виде комбинации 1 и 0 одновременно или в любом месте между ними. Несмотря на то, что до коммерческих квантовых компьютеров еще очень далеко, теоретически они способны решать определенные проблемы (например, подбор пароля) гораздо быстрее, чем современные компьютеры.
«Устройства, базирующиеся на многоуровневой логике, будут быстрее, чем обычные компьютеры, потому что они будут работать не только с двоичными логическими единицами. Но все же квантовые устройства будут быстрее, потому что кубиты имеют непрерывные значения», — сказал Чо.
«Транзистор — уже достаточно зрелая технология, а квантовые компьютеры еще и близко не готовы к коммерциализации», — продолжил он. «Между ними существует огромный разрыв. Итак, как нам перейти от одного к другому? Нам нужен какой-то эволюционный путь, технология между двоичными и бесконечными степенями свободы. Наша работа по-прежнему основана на транзисторных технологиях, которые используются в существующих устройствах, поэтому она не такая революционная, как квантовые вычисления, но она все равно развивается в этом направлении».
Технология, которую Чо и его коллеги разработали, использует новую конфигурацию двух форм оксида цинка, соединенных для формирования композитного нанослоя, который затем объединяется со слоями других материалов в сверхрешетке. Исследователи обнаружили, что они могут достичь физики, необходимой для многозначной логики, встраивая кристаллы оксида цинка, называемые квантовыми точками, в аморфный оксид цинка. Атомы, составляющие аморфное твердое вещество, не так жестко упорядочены, как в кристаллических твердых телах.
На изображении слева показаны две формы оксида цинка, объединенные для формирования составного нанослоя в транзисторе нового типа: кристаллы оксида цинка (внутри красных кружков) встроены в аморфный оксид цинка. Изображение справа — компьютерная модель структуры, которая показывает распределение электронной плотности.
«Создавая этот материал, мы обнаружили, что можем создать новую электронную структуру, которая обеспечит такое многоуровневое логическое поведение», — сказал Чо, подавший заявку на патент. «Оксид цинка — это хорошо известный материал, который имеет тенденцию образовывать как кристаллические, так и аморфные твердые вещества, поэтому с самого начала это был очевидный, но, возможно, не самый лучший выбор. Нашим следующим шагом будет изучение то, насколько универсальным является такое поведение среди других материалов, поскольку мы пытаемся оптимизировать технологию. Двигаясь вперед, я также хочу посмотреть, как мы можем связать эту технологию с квантовыми устройствами».